Re: Anna Kontula: Kadonneen järjen metsästys
Lähetetty: 28 Syys 2024, 03:41
On kyllä harvinainen vatipää hän.
Tiedepalsta keskustelufoorumi
https://tiedepalsta.fi/
Tuo vaatii aika perkeleen vankkoja perusteluita, joita tuulitunnelilta tuskin löytyy. Se, että Kontula on vasuri, ei kelpaa perusteluksi.
Eikö empatia olisi "voivoi minä ymmärrän, kyllä mäkin varmaan huutaisin jos olisin noin kännissä".Kohina kirjoitti: ↑28 Syys 2024, 07:29 The Yoneda Perspective
In the words of Dan Piponi, it "is the hardest trivial thing in mathematics." The nLab catalogues it as "elementary but deep and central," while Emily Riehl nominates it as "arguably the most important result in category theory." Yet as Tom Leinster has pointed out, "many people find it quite bewildering."
And what are they referring to?
Math is the reverse of comedy.* The anti-joke. We'll tell you the punchline first, then laboriously explain to you why it was the right punchline.
mathematical objects are completely determined by their relationships to other objects.
Let's call this the Yoneda perspective. It short, it says that if you want to understand objects (sets, groups, topological spaces, and so on) then in the words of Barry Mazur, you'll want to understand "the network of relationships they enjoy with all the other objects of their species." We've explored this idea in a couple of posts already - The Most Obvious Secret in Mathematics and The Sierpinski Space and its Special Property - so I won't elaborate here. (Do check them out if you haven't already! You can think of those posts as prequels to this one.) But I will mention that the Yoneda perspective motivates a viewpoint that some mathematicians - and ever increasingly this blog** - have adopted, namely the viewpoint that
the properties of a mathematical object are more important than its definition.
Why adopt this viewpoint? Because sounding off definitions is easy enough: The Cartesian product is..., the free group generated by a set is..., the quotient topology is.... But definitions don't always tell the whole story. Does the product naturally come with maps into or out of it? If the generating set of a free group sits inside another group, are the two groups related in some way? What do continuous functions out of a quotient space look like? These questions search for properties - defining characteristics - of an object. And the answers materialize once we widen our viewing angle and examine the object from the perspective of each object in category in which it lives.
https://www.math3ma.com/blog/the-yoneda-perspective
JA BTW tämä on sitä empatiaa ja se jos jokin on hyvä lähtökohta politiikan tekemiselle, eli dialogi. En ihan ymmärrä mitä ihmiset tarkoittavat empatialla, jos eivät linkin määritelmää. Minusta "antakaa määkin huudan, mää en ole edes kännissä" ei ole empatiaa, vaan narsistista.
Kyllä, mutta sanoinkin että mää en ole edes kännissä, jolla tarkoitin että siveyden sipuleilla on suurempi oikeus öykkäröidä omien määritelmiensä kanssa.JeeSe kirjoitti: ↑28 Syys 2024, 08:26Eikö empatia olisi "voivoi minä ymmärrän, kyllä mäkin varmaan huutaisin jos olisin noin kännissä".Kohina kirjoitti: ↑28 Syys 2024, 07:29 The Yoneda Perspective
In the words of Dan Piponi, it "is the hardest trivial thing in mathematics." The nLab catalogues it as "elementary but deep and central," while Emily Riehl nominates it as "arguably the most important result in category theory." Yet as Tom Leinster has pointed out, "many people find it quite bewildering."
And what are they referring to?
Math is the reverse of comedy.* The anti-joke. We'll tell you the punchline first, then laboriously explain to you why it was the right punchline.
mathematical objects are completely determined by their relationships to other objects.
Let's call this the Yoneda perspective. It short, it says that if you want to understand objects (sets, groups, topological spaces, and so on) then in the words of Barry Mazur, you'll want to understand "the network of relationships they enjoy with all the other objects of their species." We've explored this idea in a couple of posts already - The Most Obvious Secret in Mathematics and The Sierpinski Space and its Special Property - so I won't elaborate here. (Do check them out if you haven't already! You can think of those posts as prequels to this one.) But I will mention that the Yoneda perspective motivates a viewpoint that some mathematicians - and ever increasingly this blog** - have adopted, namely the viewpoint that
the properties of a mathematical object are more important than its definition.
Why adopt this viewpoint? Because sounding off definitions is easy enough: The Cartesian product is..., the free group generated by a set is..., the quotient topology is.... But definitions don't always tell the whole story. Does the product naturally come with maps into or out of it? If the generating set of a free group sits inside another group, are the two groups related in some way? What do continuous functions out of a quotient space look like? These questions search for properties - defining characteristics - of an object. And the answers materialize once we widen our viewing angle and examine the object from the perspective of each object in category in which it lives.
https://www.math3ma.com/blog/the-yoneda-perspective
JA BTW tämä on sitä empatiaa ja se jos jokin on hyvä lähtökohta politiikan tekemiselle, eli dialogi. En ihan ymmärrä mitä ihmiset tarkoittavat empatialla, jos eivät linkin määritelmää. Minusta "antakaa määkin huudan, mää en ole edes kännissä" ei ole empatiaa, vaan narsistista.
Skippasin toki linkit, kun ne on vaarallisia ja englanninkieliset jutut, koska neekerit usein puhuu englantia.![]()
Tuossa on kyllä jotain perää. Kuka vartioi moraalinvartijan moraalia..Kohina kirjoitti: ↑28 Syys 2024, 08:34Kyllä, mutta sanoinkin että mää en ole edes kännissä, jolla tarkoitin että siveyden sipuleilla on suurempi oikeus öykkäröidä omien määritelmiensä kanssa.JeeSe kirjoitti: ↑28 Syys 2024, 08:26Eikö empatia olisi "voivoi minä ymmärrän, kyllä mäkin varmaan huutaisin jos olisin noin kännissä".Kohina kirjoitti: ↑28 Syys 2024, 07:29 The Yoneda Perspective
In the words of Dan Piponi, it "is the hardest trivial thing in mathematics." The nLab catalogues it as "elementary but deep and central," while Emily Riehl nominates it as "arguably the most important result in category theory." Yet as Tom Leinster has pointed out, "many people find it quite bewildering."
And what are they referring to?
Math is the reverse of comedy.* The anti-joke. We'll tell you the punchline first, then laboriously explain to you why it was the right punchline.
mathematical objects are completely determined by their relationships to other objects.
Let's call this the Yoneda perspective. It short, it says that if you want to understand objects (sets, groups, topological spaces, and so on) then in the words of Barry Mazur, you'll want to understand "the network of relationships they enjoy with all the other objects of their species." We've explored this idea in a couple of posts already - The Most Obvious Secret in Mathematics and The Sierpinski Space and its Special Property - so I won't elaborate here. (Do check them out if you haven't already! You can think of those posts as prequels to this one.) But I will mention that the Yoneda perspective motivates a viewpoint that some mathematicians - and ever increasingly this blog** - have adopted, namely the viewpoint that
the properties of a mathematical object are more important than its definition.
Why adopt this viewpoint? Because sounding off definitions is easy enough: The Cartesian product is..., the free group generated by a set is..., the quotient topology is.... But definitions don't always tell the whole story. Does the product naturally come with maps into or out of it? If the generating set of a free group sits inside another group, are the two groups related in some way? What do continuous functions out of a quotient space look like? These questions search for properties - defining characteristics - of an object. And the answers materialize once we widen our viewing angle and examine the object from the perspective of each object in category in which it lives.
https://www.math3ma.com/blog/the-yoneda-perspective
JA BTW tämä on sitä empatiaa ja se jos jokin on hyvä lähtökohta politiikan tekemiselle, eli dialogi. En ihan ymmärrä mitä ihmiset tarkoittavat empatialla, jos eivät linkin määritelmää. Minusta "antakaa määkin huudan, mää en ole edes kännissä" ei ole empatiaa, vaan narsistista.
Skippasin toki linkit, kun ne on vaarallisia ja englanninkieliset jutut, koska neekerit usein puhuu englantia.![]()
Sen takia vetäisin tuon Yonedan tahtomattaan mukaan debattiin. Kun määritelmät saavat vähemmän painoarvoa ja ominaisuudet enemmän, hallusinointi jää pienemmäksi.JeeSe kirjoitti: ↑28 Syys 2024, 09:20Tuossa on kyllä jotain perää. Kuka vartioi moraalinvartijan moraalia..Kohina kirjoitti: ↑28 Syys 2024, 08:34Kyllä, mutta sanoinkin että mää en ole edes kännissä, jolla tarkoitin että siveyden sipuleilla on suurempi oikeus öykkäröidä omien määritelmiensä kanssa.JeeSe kirjoitti: ↑28 Syys 2024, 08:26Eikö empatia olisi "voivoi minä ymmärrän, kyllä mäkin varmaan huutaisin jos olisin noin kännissä".Kohina kirjoitti: ↑28 Syys 2024, 07:29 The Yoneda Perspective
In the words of Dan Piponi, it "is the hardest trivial thing in mathematics." The nLab catalogues it as "elementary but deep and central," while Emily Riehl nominates it as "arguably the most important result in category theory." Yet as Tom Leinster has pointed out, "many people find it quite bewildering."
And what are they referring to?
Math is the reverse of comedy.* The anti-joke. We'll tell you the punchline first, then laboriously explain to you why it was the right punchline.
mathematical objects are completely determined by their relationships to other objects.
Let's call this the Yoneda perspective. It short, it says that if you want to understand objects (sets, groups, topological spaces, and so on) then in the words of Barry Mazur, you'll want to understand "the network of relationships they enjoy with all the other objects of their species." We've explored this idea in a couple of posts already - The Most Obvious Secret in Mathematics and The Sierpinski Space and its Special Property - so I won't elaborate here. (Do check them out if you haven't already! You can think of those posts as prequels to this one.) But I will mention that the Yoneda perspective motivates a viewpoint that some mathematicians - and ever increasingly this blog** - have adopted, namely the viewpoint that
the properties of a mathematical object are more important than its definition.
Why adopt this viewpoint? Because sounding off definitions is easy enough: The Cartesian product is..., the free group generated by a set is..., the quotient topology is.... But definitions don't always tell the whole story. Does the product naturally come with maps into or out of it? If the generating set of a free group sits inside another group, are the two groups related in some way? What do continuous functions out of a quotient space look like? These questions search for properties - defining characteristics - of an object. And the answers materialize once we widen our viewing angle and examine the object from the perspective of each object in category in which it lives.
https://www.math3ma.com/blog/the-yoneda-perspective
JA BTW tämä on sitä empatiaa ja se jos jokin on hyvä lähtökohta politiikan tekemiselle, eli dialogi. En ihan ymmärrä mitä ihmiset tarkoittavat empatialla, jos eivät linkin määritelmää. Minusta "antakaa määkin huudan, mää en ole edes kännissä" ei ole empatiaa, vaan narsistista.
Skippasin toki linkit, kun ne on vaarallisia ja englanninkieliset jutut, koska neekerit usein puhuu englantia.![]()